Suppose that the temperature at a point (x,y), on a metal plate is $T(x,y)=4x^2-4xy+y^2$, An ant, walking on the plate, traverses a circle of radius 5 centered at the origin. What is the highest temperature encountered by the ant?
A particle is at rest at the origin. It moves
along the x −axis with an acceleration $x-x^2$
, where x is the distance of the
particle at time t. The particle next comes to
rest after it has covered a distance
Consider the function $$f(x)=\begin{cases}{-{x}^3+3{x}^2+1,} & {if\, x\leq2} \\ {\cos x,} & {if\, 2{\lt}x\leq4} \\ {{e}^{-x},} & {if\, x{\gt}4}\end{cases}$$ Which of the following statements about f(x) is true: